THE ROLE OF THE SKELETAL MUSCLE IN ATHEROSCLEROSIS
DOI:
https://doi.org/10.48750/acv.220Keywords:
Skeletal muscle, Atherosclerosis, Sarcopenia, Peripheral artery disease, coronary artery disease, Carotid artery diseaseAbstract
The role of visceral obesity in atherosclerosis is well recognized by the medical community. On the contrary, the importance of skeletal muscle is almost unknown. Muscle is nowadays understood as an endocrine organ producing myokines with direct action in several physiological and pathological pathways, including atherosclerosis. The myokines reduce the formation of neointima, expression of inflammatory mediators, the recruitment of inflammatory cells and the formation of foam cells. Epidemiological studies are demonstrating the association between reduced muscle mass and cardiovascular atherosclerotic disease. Low muscle mass is associated with an increased prevalence of coronary heart disease, aortic calcification, carotid atherosclerosis, carotid intima-media thickness, intracranial artery stenosis and endothelial dysfunction. In this way resistance training, which increases the muscle size and strength may have a key role in atherosclerosis while endurance training alone might not. The time and type of protein intake by older adults may be critical to the maintenance of muscle mass and to the increase survival. The objective of this paper was to perform a review about the published literature in the last 13 years about the role of skeletal muscle in atherosclerosis.
Downloads
References
2. Pedersen BK, Brandt C. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol. 2010. doi:10.1155/2010/520258
3. Li F, Li Y, Duan Y, Hu CAA, Tang Y, Yin Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017;33:73-82. doi:10.1016/j.cytogfr.2016.10.003
4. Ko BJ, Chang Y, Jung HS, et al. Relationship between low relative muscle mass and coronary artery calcification in healthy adults. Arterioscler Thromb Vasc Biol. 2016. doi:10.1161/ATVBAHA.116.307156
5. Freitas WM, Carvalho LSF, Moura FA, Sposito AC. Atherosclerotic disease in octogenarians: A challenge for science and clinical practice. Atherosclerosis. 2012;225(2):281-289. doi:10.1016/j.atherosclerosis.2012.06.070
6. Alexandersen P, Christiansen C. Associations between Aortic Calcification and Components of Body Composition in Elderly Men. 2006;14(9):1571-1578.
7. Buford TW, Anton SD, Judge AR, et al. Models of accelerated sarcopenia: Critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev. 2010. doi:10.1016/j.arr.2010.04.004
8. Ouchi N, Ohashi K, Shibata R, Murohara T. Protective Roles of Adipocytokines and Myokines in Cardiovascular Disease. Circ J. 2016;80(10):2073-2080. doi:10.1253/circj.CJ-16-0663
9. Kim TN, Choi KM. Sarcopenia : Definition , Epidemiology , and Pathophysiology. 2013:1-10.
10. Hida T, Imagama S, Ando K, et al. Sarcopenia and physical function are associated with inflammation and arteriosclerosis in community-dwelling people: The Yakumo study. Mod Rheumatol. 2018. doi:10.1080/14397595.2017.1349058
11. Dionne IJ, Dionne IJ. Risk Factors and Chronic Disease Effect of Sarcopenia on Cardiovascular Disease Risk Factors in Obese Postmenopausal Women. 2006;14(12):2277-2283.
12. Li F, Li Y, Duan Y, Hu CA, Tang Y, Yin Y. Cytokine & Growth Factor Reviews Myokines and adipokines : Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017;33:73-82. doi:10.1016/j.cytogfr.2016.10.003
13. Askari H, Rajani SF, Poorebrahim M, Haghi-Aminjan H, Raeis-Abdollahi E, Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacol Res. 2018;129:44-55. doi:10.1016/j.phrs.2018.01.012
14. Ochi M, Kohara K, Tabara Y, et al. Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men. Atherosclerosis. 2010;212(1):327-332. doi:10.1016/j.atherosclerosis.2010.05.026
15. Morley JE, Kim MJ, Haren MT, Kevorkian R, Banks WA. Frailty and the aging male. Aging Male. 2005. doi:10.1080/13685530500277232
16. Campos AM, Moura FA, Santos SN, Freitas WM, Sposito AC. Sarcopenia, but not excess weight or increased caloric intake, is associated with coronary subclinical atherosclerosis in the very elderly on behalf of Brasilia Study on Healthy Aging and Brasilia Heart Study. Atherosclerosis. 2017:1-7. doi:10.1016/j.atherosclerosis.2017.01.005
17. Bano G, Trevisan C, Carraro S, et al. Maturitas Inflammation and sarcopenia : A systematic review and meta -analysis. Maturitas. 2017;96:10-15. doi:10.1016/j.maturitas.2016.11.006
18. Hida T, Imagama S, Ando K, et al. Sarcopenia and physical function are associated with inflammation and arteriosclerosis in community-dwelling people : The Yakumo study. Mod Rheumatol. 2017;0(0):1-6. doi:10.1080/14397595.2017.1349058
19. Nakano R, Takebe N, Ono M, et al. Involvement of oxidative stress in atherosclerosis development in subjects with sarcopenic obesity Obesity Science & Practice. 2017;(5). doi:10.1002/osp4.97
20. Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: The role of myokines in exercise adaptations. Cold Spring Harb Perspect Med. 2017. doi:10.1101/cshperspect.a029793
21. Ferro G, Basile C, Liguori I, et al. NU SC. EXG. 2016. doi:10.1016/j.exger.2016.09.007
22. Jung HJ, Jung H, Lee T, et al. Decreased muscle mass in Korean subjects with intracranial arterial stenosis: The Kangbuk Samsung Health Study. Atherosclerosis. 2017. doi:10.1016/j.atherosclerosis.2016.05.003
23. Lee JSW, Auyeung TW, Kwok T, Lau EMC, Leung PC, Woo J. Associated factors and health impact of sarcopenia in older Chinese men and women: A cross-sectional study. Gerontology. 2008. doi:10.1159/000107355
24. Jensky NE, Allison MA, Loomba R, et al. Null association between abdominal muscle and calcified atherosclerosis in community-living persons without clinical cardiovascular disease: The multi-ethnic study of atherosclerosis. Metabolism. 2013. doi:10.1016/j.metabol.2013.06.001
25. Mazza C, Barbe C, Perrier M, Botsen D, Renard Y. Feasibility of Systematic Handgrip Strength Testing in Digestive Cancer Patients Treated With Chemotherapy : The FIGHTDIGO Study. 2017:1-6. doi:10.1002/cncr.31207
26. Shimizu Y, Sato S, Koyamatsu J, et al. Handgrip strength and subclinical carotid atherosclerosis in relation to platelet levels among hypertensive elderly Japanese. Oncotarget. 2017. doi:10.18632/oncotarget.20618
27. Matsubara Y, Matsumoto T, Aoyagi Y, et al. Sarcopenia is a prognostic factor for overall survival in patients with critical limb ischemia. J Vasc Surg. 2015;61(4):945-950. doi:10.1016/j.jvs.2014.10.094
28. Matsubara Y, Matsumoto T, Aoyagi Y, Tanaka S. Sarcopenia is a prognostic factor for overall survival in patients with critical limb ischemia. J Vasc Surg. 2015;61(4):945-950. doi:10.1016/j.jvs.2014.10.094
29. Morley JE. Diabetes , Sarcopenia , and Frailty. 2008;24:455-469. doi:10.1016/j.cger.2008.03.004
30. Pedersen BK. Muscles and their myokines. J Exp Biol. 2011. doi:10.1242/jeb.048074
31. Barazzoni R, Bischoff SC, Boirie Y, Busetto L, Yumuk V, Vettor R. Sarcopenic obesity : Time to meet the challenge. Clin Nutr. 2018;(May):1-7. doi:10.1016/j.clnu.2018.04.018
32. Lee MJ, Lee SA, Nam BY, et al. Irisin, a novel myokine is an independent predictor for sarcopenia and carotid atherosclerosis in dialysis patients. Atherosclerosis. 2015;242(2):476-482. doi:10.1016/j.atherosclerosis.2015.08.002